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CRACK PROBLEMS IN PLANE AND ANTIPLANE ELASTICITY 
USING A SINGULAR INTEGRAL EQUATION 

Mostafa A. Hamed* and Barry Cummins** 
(Received October 17, 1988) 

A numerical integration formula for the investigation of the singular integral of Ioakimidis for classical crack problems in plane 
and antiplane elasticity is developed. The method is based on a modification of the Gauss-Chebyshev quadrature and the definition 
of finite part integral having an algebraic sigularity of (-3/2) at the limits of integration. Once developed the procedure is applied 
to the determination of finite part integrals which have analytical solutions and the results are compared. Finally the integration 
for mula is applied to an actual crack problem and the stress intonsity factors are computed and presented. 
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1. I N T R O C U C T I O N  

The sigular integral equation of the first kind which arises 
in the investigation of straight cracks inside an isotropic 
elastic medium is 

l d dt+ ( t , x ) f ( t ) d t = - 1 ) ( x ) ,  x dx ~ I m 
- l < x < l  (1) 

In (1), f ( t )  is an unknown function proportional to the 
crack opening displacement, p (x) is the pressure distribution 
along the face of this crack, and m(t ,  x) is a regular Kernel 
characteristic of the type of crack problem under investiga- 
tion. Corresponding to (1) is the physical condition that the 
tips of the crack undergo no displacement 

f ( + l )  =0 (2) 

Performing the differentiation indicated in (1), one arrives 
at 

l 1 

J- f ~ f - % ~ d t +  f re(t, x ) f ( t ) d t  : -1) (x) ,  
, ' g J  t ~ I - - X )  J-~ 

- - l < x < . ' l  (3) 

where the first integral denotes the finite part integral of 
Hadamard, that is, an integration technique in which frac- 
tional orders of infinty are removed(Kutt, 1975 and Hadamar- 
d, 1923). The singular integral equation (3) is transformed to 

-y f  ,5-~-dt + j_ l  (t, ~)/' (t) dt =1)(x), 
- l < x < l  (4) 
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where 

- 3 • - 1  (t, x) = re(t, x) (5) 

by performing an integration by parts on it. 
The physical condition (2) is replaced by its equivalent 

f l f ( t ) d t = O  (6) 

A final integration by parts is performed on (4) and one 
arrives at (7) which is loakimidis singular integral 
equation(Ioakimidis, 1983) 

1 ~ . + f l K ( t , x ) f . ( t ) d t : _ 1 ) ( x )  ' -~f_ l n [ t - xJ f  ( t )dt  

- l ~ x ~ l  (7) 

where 

l ( t ,  x) = ~[t K (t, x) (8) 

Performing an integration by parts on (6) one obtains 

f L ( t - - c ) f " ( t ) d t = O  (9) 

where c is an arbitrary constant. T:he significance of (6) and 
(9) is that they make the determination of the constants of (5) 
and (8) unnecessary. 

The unknown functions f ( t ) ,  i f ( t ) ,  and f " ( t )  are 
replaced by regular unknown functions representing the 
proper singularities at _+ 1. 

f (t) = (1 - t 2) "2g(t) (10) 
f '  (t) = ( 1 -  t2)- '2h (t) ( i i )  
f "  (t) = (1 - t z) -3,2q (t) (12) 
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For a description of how the general form of (10) is 
obtained, the reader is refered to(Erdogan et al., 1973). Equa- 
tions (11) and (12) are obtained by takign successive deriva- 
tive of (10). By performing these derivatives, one can see that 
h(t) and q(t) are 

h ( t ) = - t g ( t ) + ( 1 - P ) g ' ( t )  
q( t )=th( t )  + (1-t2)h'( t)  

(13) 
(14) 

The stress intesity factors K( -+I )  at the crack tips are 
given by (Erdogan et al., 1973, Bucckner, 1973) 

K ( _ I )  =g(_~:l) (15) 
K ( + I )  = + h ( + l )  (16) 
K ( + I )  = q  (_~: 1) (17) 

The solution of singular integral equation introduced by 
Ioakimidis (Ioakimidis, 1983) can be summarized in the fol- 
lowing procedure : 

(1) Substituting (12) into (7) and (9) to arrive at 

1 / "  1 / "  1 
~J_~ (1-- t 2) 3~qn[t - xlq (t) dt + J_, ( 1 -  t 2) -3~2 

K (t, x) q(t) dt = -  p(x), - l _ < x g l  

f i (1- t~)-~:'~(t-c) q(t) dt=O 
(18) 

(19) 

(2) Approximating q (t) by finite polynomials r (t) of the 
form 

f i  (1--t~)-3'2(t--c)r k~O (26) 

The significance of (26) is that the condition of single value 
of displacement (19) is automatically satisfied when r (t) is 
of the form of (23) or (24). Substituting (22) and (20) into (18), 
one obtains 

~] a4[Uk(x) +r ]=P(x) + r.(x) 
k = o  

(27) 

where 

r (x) : - f l  ( 1 -  t ~) -3~2K (t, x)64 ( t )d t  (28) 

and r ,  (x) is an error term due to the'. approximation of q (t) 
by q,(t). To solve the system of n + l  linear equations re- 
presented by (27), Ioakimidis assured! that r,(xm) =0,  m = 
0(1) n (29) at a set of collection point,; selected as the roots of 
the T,,+~(x), Chebyshev polynomial and arrived at 

n 

Eak[U~(x,~)+r m=O(1) n (29) 
k=O 

After determining the values of ak, the stress intensity 
factors can be found from 

K (1) - a4 (30) 
h - 0  

q ( t )  = q .  ( t )  = E a4r ( t )  (20) 
h = 0  

(3) Determining the form of r ( t) ,  by performing an inte- 
gration by parts on the relation 

l fi(1--t2)llzT4+l(t) dt=U4(x) 
l - x  - l < x < l ,  k>0  

(21) 

o r  

K(-l)=k (-1)ka4 (31) 
4=0 

Equation (30) and (31) were arrived at by substituting (17) 
into (20) and using the relationships 

Ck (I) = 1 (32) 

where T4(x) and U,(x) are Chebyshev polynomials of the 
first and second respectively, and it is arrived at 

i f '  (1- t2)-3~qnlt-xlCk(t) d t : -  U4(x), 

- 1 < x < 1 ,  k~0  (22) 

and 

r  = ( - 1 )  4 

2. D E V E L O P M E N T  OF THE 
Q U A D R A T U R E  FORMULA 

(33) 

In (22), r (t) takes the form of one of the following equiva- 
lent expressions 

o r  

r (t) = tT,+~ (t) + (k+ 1) ( 1 -  t ~) U4 (t) 

r  T,+2(t) +~-~-  T,(t)  

(4) Integrating by parts the relationship 

f ~ ( 1 - t  2) 7"4+tdt=O, k>O 
1 

one arrives at 

(23) 

(24) 

(25) 

The bulk of the numerical work lies in the evaluation of the 
integral (28). In this section the Gauss-Chebyshev quadrature 
will be applied to the evaluation of this integral. Before this 
can be accomplished, (28) must be put into a suitable form by 
using Kutt 's definition for a finite part integral having a 
singularity of the order -3 /2(Kut t ,  1975). The finite part 
integral definition that is of interest is 

f l  f ( t )  - 2f(O)+2fo'f '( t-1)t-~2dt (34) ( l + t )  3/2 

where f (t) must satisfy the following conditions: 
(a) f ( t )  is continuous in the interval, I ~ [ - 1 ,  0]. 
(b) f (t) is continuously differentiable once in a neighbour- 

hood U of t = - l ~ - I .  
To put (28) into the form of (34), the integration interval of 
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(z_~,~ 1) (k " even) (59) 

~bk(X) =--r (k" odd) (60) 
i = 0  

an  ,are ivo   .0,.9, 
(50) respectively. 

3. AN APPLICATION OF THE 
Q U A D R A T U R E  FORMULA 

. APPLICATION OF Q U A D R A T U R E  
FORMULA TO A CRACK 

PROBLEM 

The crack problem under investigation is taken from (Er- 
dogan et al., 1973) 

In Fig. 1, the composite plane is loaded in such a way that 
the normal  component  of the crack surface loading is the only 
external  surface load. The star t ing ~ntegral equation for the 
investigation of this problem is 

To  test quadrature  formula, the integral which has the 
value given by the expression in (61) will be evaluated using 
the quadrature  formula. 

f l ~ 2 - d x = B ( '  xq 2'1 q 2 1 ) ,  r is an integer~O 

(61) 

1 (b4(ro) dro+l f~H(r ,  ro)~(ro)dro=~pktp(r) 
~ da t o - -  r 

(65 )  

where/~, and p2 are the shear moduli, K~= (3-v~)/(l+v~) 
for generalized plane stress, Ki = 3 - 4 v l  for plane strain, v~ is 
Poisson's rat io and m is defined as t~2/pl. In (65) H (r ,  ro) has 
this form 

In (61)#[ -2 ' /1  q - l )  \ denotes the Beta function evaluat- 2 

1 q -- 1. For the case q > 1, apply- ed at the arguments  2 ' 2 

ing the quadrature  formula to (61) results in 

' x q  - .  v / ~ x  ~ , - _  , , /2  
f l - ( ~ - d x -  ( n + l )  ._~ot• xo 

[q ( l - y , )  -a,z [y~-, _ ( _ y , )  q -~] 

+ 3 (1-- y,) "Sqxq + (--x)q]] (62) 

where 

x, =cos (  (2i + 1) x 
( 2 n + 2 ) )  (63) 

and 

1 {7+~o.[(1  + mka) H (r ,  ro) - 2 (1+  mkD (m+kz) 
(re+k2)- m ( l + K , )  (1+ ink0 
- 3 ( l - m )  (re+k2)] 

r 

+ 1 2 ( 1 - m )  (m+k-...) (ro+r)2 
r 2 

- 8 ( 1 -  m) ( m +  k2) (~o+-~j-3 } (66) 

To  normalize the interval (a,b), the following equations 
will be used 

x -  ( r -c )  t (ro--c) (b-a) 
ao ' = - - a o  , a , , -  2 (67) 

12:~-P(r)=P(x), ~ (r0) = f ' ( t )  (68) 

--1-H (r ,  ro) = ~ 1 1  (x, t) (69) 
] r  a o  

Performing the normal iza t ion (65) becomes 

( x , - 1 )  
y i -  2 (64) l f i ~ d t + f ' i I ( x , t ) f ' ( t ) d t = P ( x )  (70) 

In Tab le  1, when n = 10 the numerical  values obtained by 
evaluat ing the integral using (64) for even values of q up to 20 
are presented along with the analyt ical  values from (61). 

Table 1 Evaluation of (64) 
q Gauss-Chebyshev B 
2 - 3.14154264 - 3.14159266 
4 - 4.17238895 - 4.71238898 
6 - 5.89048623 - 5.89048623 
8 - 6.87223393 - 6.87223393 

10 - 7.73126318 - 7.73126317 
12 - 8.50438951 - 8.50438949 
14 - 9.21308864 - 9.21308862 
16 -- 9.87116641 - 9.87116638 
18 - -  10 .4881143  - - 1 0 . 4 8 8 1 1 4 3  

20 --  11 .0707873  - -  1 1 . 0 7 0 7 8 7 3  

where 

Fig. 1 

t ~ -  _ _ _  _ _ ~  

200 ~ r 

j - "  o 

I ( l~ .~ t )  2 (H.2.~ 2) 

A finite crack perpendicular to the bi-material interface 
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1 { L l ( x ' t ) = 2 z ( l + m k O ( m + k 2 )  x +  2D [ ( l+mkO 

(re+k2) - m ( l + k O  (1 + mkD 

- 3  ( 1 -  m) (m+k2) ]+12 (1 -  m) (re+k2) 
x + B  8 ( 1 - m ) ( m + k 2 ) ( x + B )  ~ } 

( x + B + 2 D )  2 ~ ~  
(71) 

and 

D =-c  (72) 
5o 

Integrating (71) with respect to t, K ( t ,  x) in (7) is found to 
be 

Table 4 Stress intensity factors for case m=23.08 and p(x)= 
-Pox for plane strain n=10, Q=25 

1.10 
1.15 
1.25 
2.00 
5.00 

10.0 

Gauss-Chebyshev Quadrature F. Erdogan et a1.,(1973) 
K (b) K (a) 

Po (ao).2 Po (ao) .2 
0.5084 -0.4058 
0.5075 -0.4300 
0.5062 -0.4564 
0.5019 -0.4943 
0.5016 0.4998 
0.5000 0.5000 

K(b) K(a) 
Po(ao) "2 p0(a0) "2 
0.5084 -0.4058 
0.5075 -0.4300 
0.5062 -0.4564 
0.5019 -0.4942 
0.5002 -0.4997 
0.5000 0.4999 

lated from (29), (30), and (31) will be presented along with the 
values computed in (Erdogan et al., 1973). 

1 { 
K ( t , x ) =  2 z ( l + m k l )  (m+k2) [ ( l+mk~)(m+k2)  

- m ( l + k , )  ( l + m k 0 - 3 ( 1 - m )  (m+k2)] 

ln(x + t + 2D) -F 1 2 ( l - m )  (re+k2) (x + D) 
( x + t + 2 D )  

-t 4 ( 1 - m ) ( m + k 2 ) ( x + D ) 2 }  
( x + t + 2 D ) 2  (73) 

In the following tables, the stress intensity factors calcu- 

Table 2 Stress intensity factors for case m=0 and p(x) =-Po a 
constant n = 10, Q = 25 

D 

1.01 
1.05 
1.10 
1.15 
1.20 
1.25 
2.00 
5.00 

10.0 

Table  3 

Gauss-Chebyshev Quadrature F. Erdogan et a1.,(1973) 
K(b) K(a) 

po(ao) "2 po(ao) 112 
1.327 3.715 
1.251 2.152 
1.208 1.756 
1.180 1.573 
1.160 1.461 
1.144 1.385 
1.051 1.089 
1.006 1.008 
0.999 0.999 

K (b) K (a) 
Po (ao) "~ Po (ao).2 

1.330 3.720 
1.254 2.159 
1.211 1.759 
1.813 1.573 
1.163 1.464 
1.146 1.388 
1.054 1.091 
1.009 1.011 
1.002 1.003 

Stress intensity factors for case m= 23.08 and p(x)= 
-Po for plafle strain n=10 Q=25 

1.10 
1.15 
1.25 
2.00 
5.00 

10.0 

Gauss-Chebyshev Quadrature F. Erdogan et aL,(1973) 
K(b) K(a) 

po(ao) "2 po(ao) "2 
0.8994 0.6677 
0.9060 0.7182 
0.9174 0.7843 
0.9626 0.9357 
0.9939 0.9923 
019993 0.9990 

K(b) K(a) 
Po(ao) '/2 po(ao) "2 
0.8985 0.6674 
0.9051 0.7178 
0.9165 0.7838 
0.9616 0.9349 
0.9929 0.9912 
0.9981 0.9979 

6. CONCLUSION 

The advantage of the proposed singular integral equation 
is that its kernel is weakly singular and that the numerical 
solution of singular integral equations with logarithmic sin- 
gularities is more classical than the numerical solution of 
Cauchy type singular integral equations. Also the physical 
condition is automatically satisfied because of the choice of q 
(t). Finally, f "  (t) has a physical interpretation proportional 
to the second derivative of the crack opening displacement 
almost equal to the curvature of the deformed edges of a 
straight crack after moving away from the crack tip. The 
simplicity of the quadrature makes possible the evaluation of 
a large number of linear equations (m) in (29). Application of 
Gauss-Chebyshev Quadrature to a finite crack perpendicular 
to the bi-material interface showed good agreement with the 
numerical results by Erdogan (Erdogan et al., 1973). 
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